Module	tal Control Techniq Major topics & hours	Content overview
Module 1	An overview of modulation and control techniques in PMCs (4 hrs)	 Popular power management converters and control objectives Fixed-frequency and variable frequency control techniques Feedback and feedforward control techniques Some recent trends of commercial digital control solutions
Module 2	Modeling techniques in PMCs (4 hours)	 Switching power converters – A form of switched linear systems State space modeling and averaging technique PWM switch modeling and circuit averaging Linearization and derivation of small-signal transfer functions Phase plane analysis and concept of eigenvector
Module 3	Nonlinear control techniques in PMCs (4 hours)	 Ripple-based and hysteresis control techniques in PMCs Switching dynamics under various modulation techniques Overview of variable structure system and sliding mode control Design of sliding mode control in buck and boost converters Control design to achieve the fastest (time-optimal) performance
Module 4	Digital architectures in PMCs (3 hrs)	 An overview of digital control product segments Levels of digitization, associated systems, and circuits Fixed and variable frequency digital voltage control architectures Fixed and variable frequency digital current control architectures
Module 5	Small-signal modelling and design of digitally controlled PMCs (4 hrs)	 Continuous-time modelling of digitally controlled PMCs Discrete-time modelling and small-signal transfer functions A comparative study of different modelling techniques Design of digital voltage control techniques Design of digital current control techniques
Module 6	Advanced digital control techniques in PMCs (5 hrs)	 Light load control techniques Multimode control techniques for wide operating range Time optimal control and critical performance limits Large-signal based digital control design Nonlinear control techniques for fast transient performance Some case studies with simulation
Module 7	Digital Control Implementation and FPGA prototyping (6 hrs)	 Fixed point implementation and top-down design methods Introduction to Verilog HDL and modelling techniques Verilog HDL implementation of digital voltage mode control Verilog HDL implementation of digital current mode control Steps for FPGA prototyping Some experimental case studies of FPGA-based digital control

Reference book and material:

- [1] S. Kapat and P. T. Krein, "A Tutorial and Review Discussion of Modulation, Control and Tuning of High-Performance DC-DC Converters based on Small-Signal and Large-Signal Approaches" *IEEE Open Journal of Power Electronics*, vol. 1, pp. 339 - 371, Aug. 2020
- [2] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 3rd Ed., Springer, 2020
- [3] YouTube course by S. Kapat, "Control and Tuning Methods in Switched Mode Power Converters", 2021
- [4] YouTube course by S. Kapat, "Digital Control in Switched Mode Power Converters and FPGA Prototyping", 2022