Modeling Techniques and Validation Methodologies in Closed-Loop Switched Mode Power Converter Products

Total duration of 40 hours (each session of 10 hours)		
Sessions	Session theme	Major topics
	Continuous-time	• State space modelling under CCM and DCM
S 1	(CT) large-signal and	• State space averaging and small-signal modelling
	small-signal	• PWM switch modelling under CCM
	modelling of a buck	• Derivation of equivalent circuit model
	converter	• Large-signal and small-signal model under VMC and CMC
		• Derivation of various small-signal transfer functions
		• Characterization of steady-state parameter under CCM and DCM
		• Steady-state ripple parameters and loss formulations under CCM
		• Steady-state ripple parameters and loss formulations under DCM
		• Development of custom MATLAB model for model validation
	Discrete-time (DT)	• Solutions of state space equations under CCM and DCM
S_2	large-signal and	• Derivation of discrete-time (DT) large-signal model
	small-signal	• Derivation of DT small-signal model
	modelling of a buck	• DT large-signal and small-signal models under CCM and DCM
	converter	• DT large-signal and small-signal models of VMC buck converter
		• DT large-signal and small-signal models of CMC buck converter
		• Development of custom MATLAB model for model validation
	Validation of	• Setting up device under test (DUT) using buck evaluation boards
S ₃	Continuous Time	 Identifying datasheet parameters and operating conditions
	Small-Signal Model	• Working with test and measurements
	of a Closed-Loop	• Perform various time domain case studies
	Buck Converter	• Performance frequency domain study using a loop-gain analyser
		• Validating small-signal model with transient test case studies
		• Validating frequency domain model with small-signal TF
	Validation of	 Validating DT large-signal models using test cases
S 4	Discrete Time (DT)	• Validating steady-state ripple parameters under CCM and DCM
	Large-Signal Model	• Validating DT small-signal model using test frequency response
	of a Closed-Loop	• Verifying closed-loop fast-scale stability of CMC buck converters
	Buck Converter	• Summarizing steps for validating large/small-signal models

Reference book and material:

- [1] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 3rd Ed., Springer, 2020.
- [2] S. Kapat and P. T. Krein, "A Tutorial and Review Discussion of Modulation, Control and Tuning of High-Performance DC-DC Converters based on Small-Signal and Large-Signal Approaches" *IEEE Open Journal of Power Electronics*, vol. 1, pp. 339 - 371, Aug. 2020.