Modeling, Analysis and Design of Fixed-Frequency Control Methods in DC-DC		
Converters and MATLAB based Design Automation – Part II		
Session details (Each session of 2 hours duration)		
Sessions	Session theme	Major topics
	Derivations of various	• Derivation of small-signal transfer functions (TFs)
S ₁	transfer functions and	• Comparing TFs obtained from various modelling techniques
	model validation using	• Step-by-step guidelines to develop model validation platform
	MATLAB AC transient	• MATLAB interaction simulation platform
	simulation	• Model validation using MATLAB – DC and AC transient analysis
	Design of voltage mode	Loop gain analysis
Sa	control in a buck	 Loop shaping objectives
02	converter and model	• Design and tuning of voltage mode control using PID controller
	validation of closed-loop	• Need for a type-III compensator and its design method
	buck converter	• Model validation of closed-loop system using MATLAB
		• Design VMC with input voltage feedforward and model validation
S 3	Small-signal modelling	Approximate first-order modelling technique
	techniques with closed	More accurate modelling techniques
	current loop	• Derivation of small-signal transfer functions
	Sub-harmonic instability	Understanding sub-harmonic instability
S4	in CMC – its existence	 Concept of bifurcation and nonlinear dynamics
N 4	and impacts	Smooth bifurcation and non-smooth bifurcation
	Discrete-time modelling	Introduction to discrete-time modelling
S 5	for analysing sub-	• State space modelling and solution vector
	harmonic instability	• Steps-by-steps guidelines for derivation of discrete-time models
		• Poincare map for understanding sub-harmonic instability
	Discrete-time large and	• Discrete-time small-signal modelling – graphical approach
S 6	small-signal modelling in	• Discrete-time small-signal modelling – analytical approach
	CCM and model	• Derivation of various transfer functions
	validation	Model validation using MATLAB simulation
	Understanding Sampling	• Understanding natural sampling effect in analog CMC
S ₇	effect in analog CMC and	 Modeling sampling effect in current loop
	Ridley modelling	• Derivation of Ridley small-signal model
		Model validation under CMC
	Design methods for CMC	• Design of CMC using approximate SSM
S 8	buck converter in CCM	• Validation of approximate, accurate and Ridley SSM
		• Current mode control design with load current feed-forward
S 9	Design of buck converter	• Derivation large-signal tuning for time optimal performance
	using small and large-	• Implementation of CMC and VMC buck converter
	signal approaches	• Comparative performance study – small-signal vs large-signal
S ₁₀	Discrete-time modelling	• Approximate discrete-time modelling under DCM
	under DCM and stability	• Discrete-time modelling under PWM control in DCM
	analysis under light load	• Discrete-time modelling under PFM control in DCM
	control methods – PWM,	• Discrete-time modelling under PSM control in DCM
	PFM, PSM techniques	 Model validation using MATLAB simulation

Reference book and material:

- [1] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 3rd Ed., Springer, 2020.
- [2] S. Kapat and P. T. Krein, "A Tutorial and Review Discussion of Modulation, Control and Tuning of High-Performance DC-DC Converters based on Small-Signal and Large-Signal Approaches" *IEEE Open Journal of Power Electronics*, vol. 1, pp. 339 - 371, Aug. 2020.