Modeling, Analysis and Design of Fixed-Frequency Control Methods in DC-DC		
Converters and MATLAB based Design Automation – Part I		
Session details (Each session of 2 hours duration)		
Sessions	Session theme	Major topics
	Understanding need for	• Switched mode power converter – design and control objectives
S 1	modeling of power	• Understanding modelling requirements and accuracy
	converter circuits	• Motivations and objectives of modelling – buck converter example
		Overview of modelling techniques
	Model development for	• Mathematical modelling of a buck converter
Sa	MATLAB interactive	MATLAB model development
02	simulation	• Step-by-step guidelines for MATLAB interactive simulation
		• Objectives for developing MATLAB based design automation
S 3	Fixed frequency and	• Fixed-frequency modulation and control methods in CCM
_	variable frequency	• Variable frequency modulation techniques in CCM
	modulation techniques in	• Light load and multimode control methods in DCM
	CCM and DCM	• MATLAB model development and interactive simulation
	Formulation of steady-	• Ripple parameters under fixed- and variable frequency modulation
S.	state ripple parameters,	• Derivation of RMS current, current ripple and voltage ripple
04	RMS current in CCM	• Design of power stage based on CCM operating mode
		• MATLAB simulation and model verifications
	Formulation of steady-	• Light load control – PWM, PFM, PSM, hysteresis, burst mode
S 5	state ripple parameters,	• Derivation voltage ripple, current ripple and RMS current under
	RMS current in DCM	various light load control methods and comparative study
		 MATLAB simulation and model verifications
	State space averaging and	• State space modelling and state space averaging technique
S 6	small-signal modelling	• Jacobian matrix and Taylor series linearization
		• Derivation of large-signal and small-signal models
	Circuit averaging and	 Introduction to circuit averaging technique
S 7	equivalent circuit	• Derivation of large-signal and small-signal models
	modelling in CCM	• Equivalent circuit model
	Three terminal modelling	• Basics of three terminal modelling
S 8	in a CCM buck converter	• Average switch modelling
		• Derivation of large-signal equivalent circuit model
S 9	Average techniques in	• Approximate averaging techniques in DCM
	DCM and derivation of	• More accurate averaging technique in DCM
	equivalent circuit model	• Equivalent circuit model under DCM
S ₁₀	DC analysis of fixed-	Derivation of DC equivalent circuit
	frequency buck converter	• DC analysis – voltage gain, current gain and efficiency in CCM
	in CCM, DCM	• DC analysis – voltage gain, current gain and efficiency in DCM
		Model validation using MATLAB

Reference book and material:

[1] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 3rd Ed., Springer, 2020.

[2] S. Kapat and P. T. Krein, "A Tutorial and Review Discussion of Modulation, Control and Tuning of High-Performance DC-DC Converters based on Small-Signal and Large-Signal Approaches" *IEEE Open Journal of Power Electronics*, vol. 1, pp. 339 - 371, Aug. 2020.