Digital Control Techniques in Switched Mode Power Converters (SMPCs) –		
Part II (May 01 to May 28, 2021)		
Module number	Major topics & hours	Content overview
Module#M ₂₁	Linear and Nonlinear Control Methods in SMPCs (4 hrs)	 PWM voltage mode and current mode control (CMC) Peak CMC, valley CMC and average CMC techniques Constant on-time, constant off-time current mode control Hysteresis control and sliding mode control MATLAB based simulation case studies
Module#M ₂₂	Digital Modulation and Mixed-Signal Implementation (6 hrs)	 Digital redesign of analog control and further possibilities Digital pulse width modulator (DPWM) architectures Selection of sampling rate and aliasing effects Effect of sapling delay on stability Effect of quantization and existence of limit cycle oscillation Methods for stability enhancement MATLAB based simulation case studies
Module#M ₂₃	Digital Current Mode Control Techniques in High Frequency SMPCs (4 hrs)	 Fixed frequency mixed-signal and fully digital CMC implementation Variable frequency mixed-signal and fully digital CMC implementation Mixed-signal hysteresis current mode control implementation MATLAB custom coding and simulation case studies
Module#M ₂₄	Modelling, Analysis and Design of Digitally Controlled SMPCs (6 hrs)	 Continuous-time small-signal model and discrete equivalent Discrete-time small-signal model Small-signal and fast-scale stability analysis Indirect and direct design methods MATLAB based design case studies
Module#M ₂₅	Digital Control of AC/DC Converters and Power Factor Correctors (5 hrs)	 Boost power factor corrector (PFC) under CCM, CrM and DCM Modulation and feedback/feedforward control techniques Digital current mode control architectures Advanced digital control techniques MATLAB based simulation case studies
Module#M ₂₆	Digital Control and Modeling Techniques in LLC Converters (4 hrs)	 Zero current and zero voltage switching and operating regions Digital modulation techniques and frequency regulation aspects Modeling, analysis and digital control design techniques Digital control methods for fast transient and high light load efficiency MATLAB based case studies
Module#M ₂₇	Digital Control Implementation using Verilog HDL & Aspects of FPGA Prototyping (5 hrs)	 Fixed point implementation of a digital PID controller Introduction to Verilog HDL and modelling techniques Top down design methodology Verilog HDL implementation of a digital PID controller Introduction to FPGA device and interfacing circuits A video demonstration of FPGA based rapid prototyping

Reference book and material:

- [1] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 3rd Ed., Springer, 2020.
- [2] S. Kapat and P. T. Krein, "A Tutorial and Review Discussion of Modulation, Control and Tuning of High-Performance DC-DC Converters based on Small-Signal and Large-Signal Approaches" *IEEE Open Journal of Power Electronics*, vol. 1, pp. 339 371, Aug. 2020.