Title: Power Management Circuits, Modelling, Control, Analysis, and Design

Speaker: Prof. Santanu Kapat, IIT Kharagpur, Web: http://www.facweb.iitkgp.ac.in/~skapat/

Day 1 (March 02, 2020)		
Morning Session (9:00 am to 12:30 pm)	Afternoon Session (2:00 to 5:30 pm)	
Theme: Introduction to power management (PM) converters	Theme: Steady-state analysis of PM converters	
Details:	Details:	
Power delivery network in VLSI systems	 Overview of step-down/up DC-DC converters 	
Power management (PM) applications	 Power switching devices and filter networks 	
Need for energy-efficient PM converters	Inductor volt-second and capacitor charge balance	
Different types of PM converters	Steady-state voltage gains and ripple parameters	
Switching DC-DC converters	 Discontinuous conduction mode (DCM) 	

Day 2 (March 03, 2020)		
Morning Session (9:00 am to 12:30 pm)	Afternoon Session (2:00 to 5:30 pm)	
Theme: Modelling of PWM DC-DC converters in CCM	Theme: Impedance analysis using equivalent circuit models	
Details:	Details:	
 State-space modelling of DC-DC converters 	 AC equivalent circuits of buck and boost converters 	
 State-space averaging and linearization 	 Derivation of various transfer functions of PM converters 	
Average switch modelling	Analysis of audio-susceptibility and input/output impedances	
Equivalent circuit models	 Pole/zero analysis of control-to-output transfer functions 	
DC analysis of practical PM converters	Need for feedback and feed-forward control methods	

Day 3 (March 04, 2020)		
Morning Session (9:00 am to 12:30 pm)	Afternoon Session (2:00 to 5:30 pm)	
Theme: Control methods in DC-DC converters	Theme: Design of voltage mode control (VMC) in PM converters	
Details:	Details:	
Feedback control methods in DC-DC converters	Loop gain and stability analysis using PWM VMC	
PWM voltage mode control method	Closed-loop audio-susceptibility and input/output impedances	
PWM current mode control method	Identifying desired closed-loop performance	
Variable frequency control methods	Design of feedback compensator	
Control methods in commercial PMICs – Introduction	Need for input voltage feed-forward in VMC	

Day 4 (March 05, 2020)		
Morning Session (9:00 am to 12:30 pm)	Afternoon Session (2:00 to 5:30 pm)	
Theme: Current mode control (CMC) and stability analysis	Theme: Design of CMC in DC-DC converters	
Details:	Details:	
Current sensing techniques in DC-DC converters	Loop gain and stability analysis using PWM CMC	
Approximate equivalent circuit models in CMC	Closed-loop audio-susceptibility and input/output impedances	
More accurate equivalent circuit models in CMC	Design of feedback compensator	
Sub-harmonic instability and compensation in CMC	Need for load current feed-forward in CMC	
Ridley modelling approach and analysis in CMC	Design of ripple-based CMC in DC-DC converters	

Day 5 (March 06, 2020)		
Morning Session (9:00 am to 12:30 pm)	Afternoon Session (2:00 to 5:30 pm)	
Theme: Light load control method in DC-DC converters	Theme: Advanced topics in DC-DC converters	
Details:	Details:	
Limitations of PWM control under light load conditions	DC-DC converters for low-voltage-high-current applications	
Pulse skip modulation for improving light load efficiency	DC-DC converters for multi-output low power applications	
Constant on-time control (COT) in DCM and design	DC-DC converters for 5G communication	
An overview of other light load control methods	GaN power devices for high power density DC-DC converters	
Need for multi-mode control methods over wide load current	Digital control in PM converters – Challenges and opportunities	